183 research outputs found

    The Origins of Human Functional Stereotaxis: A Reappraisal

    Get PDF
    In order to shed light on the first application of human functional stereotactic neurosurgery, whether it was in the realm of movement disorders, as has been claimed repeatedly, or in the realm of psychiatry, a review of the original scholarly literature was conducted. Tracking and scrutinising original publications by Spiegel and Wycis, the pioneers of human stereotactic neurosurgery, it was found that its origin and the very incentive for its development and first clinical use were to avoid the side effects of frontal leucotomy. The first applications of functional stereotactic neurosurgery were in performing dorsomedial thalamotomies in psychiatric patients; it was only later that the stereotactic technique was applied in patients with chronic pain, movement disorders and epilepsy. Spiegel and Wycis' first functional stereotactic operations were for obsessive-compulsive disorder, schizophrenia, and other psychiatric conditions

    Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease

    Get PDF
    Oswal et al. characterise the effect of deep brain stimulation (DBS) on STN-cortical synchronisation in Parkinson-s disease. They propose that cortical driving of the STN in beta frequencies is subdivided anatomically and spectrally, corresponding to the hyperdirect and indirect pathways. DBS predominantly suppresses the former.Oswal et al. characterise the effect of deep brain stimulation (DBS) on STN-cortical synchronisation in Parkinson-s disease. They propose that cortical driving of the STN in beta frequencies is subdivided anatomically and spectrally, corresponding to the hyperdirect and indirect pathways. DBS predominantly suppresses the former.Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment

    Clinical outcomes after MRI connectivity-guided radiofrequency thalamotomy for tremor

    Get PDF
    OBJECTIVE: Radiofrequency thalamotomy (RF-T) is an established treatment for refractory tremor. It is unclear whether connectivity-guided targeting strategies could further augment outcomes. The aim of this study was to evaluate the efficacy and safety of MRI connectivity-guided RF-T in severe tremor. METHODS: Twenty-one consecutive patients with severe tremor (14 with essential tremor [ET], 7 with Parkinson's disease [PD]) underwent unilateral RF-T at a single institution between 2017 and 2020. Connectivity-derived thalamic segmentation was used to guide targeting. Changes in the Fahn-Tolosa-Marin Rating Scale (FTMRS) were recorded in treated and nontreated hands as well as procedure-related side effects. RESULTS: Twenty-three thalamotomies were performed (with 2 patients receiving a repeated intervention). The mean postoperative assessment time point was 14.1 months. Treated-hand tremor scores improved by 63.8%, whereas nontreated-hand scores deteriorated by 10.1% (p < 0.01). Total FTMRS scores were significantly better at follow-up compared with baseline (mean 34.7 vs 51.7, p = 0.016). Baseline treated-hand tremor severity (rho = 0.786, p < 0.01) and total FTMRS score (rho = 0.64, p < 0.01) best correlated with tremor improvement. The most reported side effect was mild gait ataxia (n = 11 patients). CONCLUSIONS: RF-T guided by connectivity-derived segmentation is a safe and effective option for severe tremor in both PD and ET

    Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease

    Get PDF
    Objectives Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy. Methods High angular resolution diffusion imaging in twenty patients with advanced Parkinson’s disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy. Results All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p<0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X=-10(-9.5), Y=-13(-1) and Z=-7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity. Interpretation These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia

    Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson's disease

    Get PDF
    Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase-amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magneto-encephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase-amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magneto-encephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase-amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit

    Accuracy, precision, and safety of stereotactic, frame-based, intraoperative MRI-guided and MRI-verified deep brain stimulation in 650 consecutive procedures

    Get PDF
    OBJECTIVE: Suboptimal lead placement is one of the most common indications for deep brain stimulation (DBS) revision procedures. Confirming lead placement in relation to the visible anatomical target with dedicated stereotactic imaging before terminating the procedure can mitigate this risk. In this study, the authors examined the accuracy, precision, and safety of intraoperative MRI (iMRI) to both guide and verify lead placement during frame-based stereotactic surgery. METHODS: A retrospective analysis of 650 consecutive DBS procedures for targeting accuracy, precision, and perioperative complications was performed. Frame-based lead placement took place in an operating room equipped with an MRI machine using stereotactic images to verify lead placement before removing the stereotactic frame. Immediate lead relocation was performed when necessary. Systematic analysis of the targeting error was calculated. RESULTS: Verification of 1201 DBS leads with stereotactic MRI was performed in 643 procedures and with stereotactic CT in 7. The mean ± SD of the final targeting error was 0.9 ± 0.3 mm (range 0.1-2.3 mm). Anatomically acceptable lead placement was achieved with a single brain pass for 97% (n = 1164) of leads; immediate intraoperative relocation was performed in 37 leads (3%) to obtain satisfactory anatomical placement. General anesthesia was used in 91% (n = 593) of the procedures. Hemorrhage was noted after 4 procedures (0.6%); 3 patients (0.4% of procedures) presented with transient neurological symptoms, and 1 experienced delayed cognitive decline. Two bleeds coincided with immediate relocation (2 of 37 leads, 5.4%), which contrasts with hemorrhage in 2 (0.2%) of 1164 leads implanted on the first pass (p = 0.0058). Three patients had transient seizures in the postoperative period. The seizures coincided with hemorrhage in 2 of these patients and with immediate lead relocation in the other. There were 21 infections (3.2% of procedures, 1.5% in 3 months) leading to hardware removal. Delayed (> 3 months) retargeting of 6 leads (0.5%) in 4 patients (0.6% of procedures) was performed because of suboptimal stimulation benefit. There were no MRI-related complications, no permanent motor deficits, and no deaths. CONCLUSIONS: To the authors' knowledge, this is the largest series reporting the use of iMRI to guide and verify lead location during DBS surgery. It demonstrates a high level of accuracy, precision, and safety. Significantly higher hemorrhage was encountered when multiple brain passes were required for lead implantation, although none led to permanent deficit. Meticulous audit and calibration can improve precision and maximize safety

    Stimulating at the right time: phase-specific deep brain stimulation.

    Get PDF
    SEE MOLL AND ENGEL DOI101093/AWW308 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Brain regions dynamically engage and disengage with one another to execute everyday actions from movement to decision making. Pathologies such as Parkinson's disease and tremor emerge when brain regions controlling movement cannot readily decouple, compromising motor function. Here, we propose a novel stimulation strategy that selectively regulates neural synchrony through phase-specific stimulation. We demonstrate for the first time the therapeutic potential of such a stimulation strategy for the treatment of patients with pathological tremor. Symptom suppression is achieved by delivering stimulation to the ventrolateral thalamus, timed according to the patient's tremor rhythm. Sustained locking of deep brain stimulation to a particular phase of tremor afforded clinically significant tremor relief (up to 87% tremor suppression) in selected patients with essential tremor despite delivering less than half the energy of conventional high frequency stimulation. Phase-specific stimulation efficacy depended on the resonant characteristics of the underlying tremor network. Selective regulation of neural synchrony through phase-locked stimulation has the potential to both increase the efficiency of therapy and to minimize stimulation-induced side effects

    Confirmation of functional zones within the human subthalamic nucleus: Patterns of connectivity and sub-parcellation using diffusion weighted imaging

    Get PDF
    The subthalamic nucleus (STN) is a small, glutamatergic nucleus situated in the diencephalon. A critical component of normal motor function, it has become a key target for deep brain stimulation in the treatment of Parkinson's disease. Animal studies have demonstrated the existence of three functional sub-zones but these have never been shown conclusively in humans. In this work, a data driven method with diffusion weighted imaging demonstrated that three distinct clusters exist within the human STN based on brain connectivity profiles. The STN was successfully sub-parcellated into these regions, demonstrating good correspondence with that described in the animal literature. The local connectivity of each sub-region supported the hypothesis of bilateral limbic, associative and motor regions occupying the anterior, mid and posterior portions of the nucleus respectively. This study is the first to achieve in-vivo, non-invasive anatomical parcellation of the human STN into three anatomical zones within normal diagnostic scan times, which has important future implications for deep brain stimulation surgery
    corecore